

Overview

Easily batch-build cmake projects!

cmany [https://github.com/biojppm/cmany] is a command line tool to easily
build variations of a CMake C/C++ project. It combines different compilers,
cmake build types, bundles of compilation flags, processor architectures and
operating systems. Each of these items can also have associated compilation
flags.

For example, to configure and build a project combining clang++ and g++
with both Debug and Release:

$ cmany build -c clang++,g++ -t Debug,Release path/to/CMakeLists.txt

The command above will result in four different build trees, placed by default
under a build subdirectory in the current working directory:

$ ls build/*
build/linux-x86_64-clang++3.9-Debug
build/linux-x86_64-clang++3.9-Release
build/linux-x86_64-gcc++6.1-Debug
build/linux-x86_64-gcc++6.1-Release

Each build tree is obtained by first configuring the project with the items
in each combination, and then invoking cmake --build to build the project
at once.

You can also use cmany just to simplify your cmake workflow! These two
command sequences have the same effect (b is an alias to build):

	typical cmake

	cmany

	
$ mkdir build

$ cd build

$ cmake ..

$ cmake --build .

	
$ cmany b

Features

	Easily configures and builds many variations of your project with one
simple command.

	Saves the tedious and error-prone work of dealing with many build trees by
hand.

	Sensible defaults: cmany build will create and build a single project
using CMake’s defaults.

	Transparently pass flags (compiler flags, processor defines or cmake cache
variables) to any or all of the builds.

	Useful for build comparison and benchmarking. You can easily setup bundles
of flags, aka variants.

	Useful for validating and unit-testing your project with different
compilers and flags.

	Useful for creating distributions of your project.

	Avoids a full rebuild when the build type is changed. Although this feature
already exists in multi-configuration cmake generators like Visual Studio,
it is missing from mono-configuration generators like Unix Makefiles.

	Runs arbitrary commands in every build tree or install tree.

	Full control over how the build items are combined.

	Emacs integration! https://github.com/biojppm/cmany.el

Contents

Contents:

	cmany
	Features

	More info

	Support

	Current status

	License

	Installing
	Requirements

	Installing from PyPI

	Installing from source

	Uninstalling

	Quick tour
	Getting help

	Build

	Configure

	Install

	Choosing the build type

	Choosing the compiler

	Choosing build/install directories

	Building many trees at once

	Using flags

	Cross-compiling

	Building dependencies

	Argument reuse

	Exporting build configurations

	Build items
	Per-item flags

	Compilers

	Build types

	Variants

	Systems

	Architectures

	Excluding builds
	Excluding builds by item name

	Excluding builds by build name

	Examples

	Flags
	CMake cache variables

	Preprocessor macros

	C++ compiler flags

	C compiler flags

	Linker flags

	Flag aliases

	Toolchains

	Build exclusion arguments

	Using cmany with Visual Studio
	TL;DR

	VS alias examples

	Complete explanation

	Aliasing scheme

	Alias list

	Project dependencies

	Reusing arguments
	Session arguments

	Project file

Indices and tables

	Index

	Module Index

	Search Page

	[image: License: MIT] [https://opensource.org/licenses/MIT]

	[image: Documentation status] [https://cmany.readthedocs.io/]

	[image: Chat on Gitter] [https://gitter.im/cmany_/community]

	Linux + OS X: [image: Linux+OSX build status] [https://travis-ci.org/biojppm/cmany]

	Windows: [image: Windows build status] [https://ci.appveyor.com/project/biojppm/cmany]

cmany

Easily batch-build cmake projects!

cmany [https://github.com/biojppm/cmany] is a command line tool to easily
build variations of a CMake C/C++ project. It combines different compilers,
cmake build types, compilation flags, processor architectures and
operating systems.

For example, to configure and build a project combining clang++ and g++
with both Debug and Release:

$ cmany build -c clang++,g++ -t Debug,Release path/to/CMakeLists.txt

The command above will result in four different build trees, placed by default
under a build directory placed in the current working directory:

$ ls build/*
build/linux-x86_64-clang++3.9-Debug
build/linux-x86_64-clang++3.9-Release
build/linux-x86_64-gcc++6.1-Debug
build/linux-x86_64-gcc++6.1-Release

Each build tree is obtained by first configuring CMake with the given
parameters, and then invoking cmake --build to build the project at once.

You can also use cmany just to simplify your cmake workflow! These two
command sequences have the same effect:

	typical cmake

	cmany

	
$ mkdir build

$ cd build

$ cmake ..

$ cmake --build .

	
$ cmany b

Features

	Easily configure and build many variations of your project with one simple command.

	Saves the tedious work of dealing with many build trees by hand.

	Sensible defaults: cmany build will create and build a single project using CMake’s
defaults.

	Transparently pass flags (compiler flags, processor defines or cmake cache
variables) to any or all of the builds.

	Useful for build comparison and benchmarking. You can easily setup bundles of flags, aka variants.

	Useful for validating and unit-testing your project with different
compilers and flags.

	Useful for creating distributions of your project.

	Avoids a full rebuild when the build type is changed. Although this feature
already exists in multi-configuration cmake generators like Visual
Studio, it is missing from mono-configuration generators like Unix
Makefiles.

	Run arbitrary commands in every build tree or install tree.

More info

	Project home [https://github.com/biojppm/cmany]

	Installing [https://cmany.readthedocs.io/en/latest/installing/]

	Getting started [https://cmany.readthedocs.io/en/latest/quick_tour/]

Support

	Gitter room: https://gitter.im/cmany_/community.

	send bug reports to https://github.com/biojppm/cmany/issues.

	send pull requests to https://github.com/biojppm/cmany/pulls.

Current status

cmany is in alpha state, under current development.

Known issues

	cmany invokes the compilers given to it to find their name and version. So
far, this successfully works with Visual Studio, gcc (also with arm-linux and
mips-linux counterparts), clang, icc and zapcc. However, the current
implementation for guessing the name and version is fragile and may fail in
some compilers which were not tested. Please submit a bug or PR if you
see such a failure.

	Though cmany works in OS X with gcc and clang, using Xcode has not been
tested at all. Get in touch if you are interested in getting cmany to work
with Xcode.

	Pure C projects (ie not C++) should work but have not yet been tested. Some
bugs may be present.

License

cmany is permissively licensed under the MIT license.

Installing

Requirements

	Python 3.6+

	CMake 3.13+

	pip

Installing from PyPI

cmany is available through the PyPI repository [https://pypi.python.org/pypi/cmany/]. Installing couldn’t be easier:

$ pip install cmany

Installing from source

Installing from source is easy with pip:

$ git clone https://github.com/biojppm/cmany
$ cd cmany
$ pip install .

If you want to develop cmany, use the -e option for pip so that any
changes you make to cmany’s sources are always reflected to the installed
version:

$ pip install -e .

Uninstalling

To uninstall cmany, just use pip:

$ pip uninstall cmany

Quick tour

Getting help

To get a list of available commands and help topics:

$ cmany help

To get help on a particular command (eg, build) or topic (eg, quick_tour), any
of the following can be used, and they are all equivalent:

$ cmany help build
$ cmany h build # help has an alias: h
$ cmany build -h
$ cmany build --help

Note that this text is also available as a help topic. You can read it with
the help command:

$ cmany h quick_tour

Build

Consider a directory initially with this layout:

$ ls -1
CMakeLists.txt
main.cpp

The following command invokes CMake to configure and build this project:

$ cmany build .

Like with CMake, this will look for the CMakeLists.txt file at the given path
(.) and place the build tree at the current working directory. If the
path is omitted, CMakeLists.txt is assumed to be on the current working dir.
Also, the build command has an alias of b. So the following command is
exactly the same as cmany build .:

$ cmany b

When no compiler is specified, cmany chooses CMake’s default
compiler. cmany’s default build type is (explicitly set to) Release. As an
example, using g++ 6.1 in Linux x86_64, the result of the command above will
be this:

$ tree -fi -L 2
build/
build/linux-x86_64-g++6.1-Release/
CMakeLists.txt
main.cpp

$ ls build/*/CMakeCache.txt
build/linux-x86_64-g++6.1-Release/CMakeCache.txt

Note that unlike CMake, cmany will not place the resulting build tree
directly at the current working directory: it will instead nest it under
./build. Each build tree name is made unique by combining the names of
the operating system, architecture, compiler+version and the CMake build
type.

Configure

It was said above that the cmany build command will also configure. In
fact, cmany will detect when a configure step is needed. But you can just use
cmany configure if that’s only what you want to do:

$ cmany configure

Same as above: c is an alias to configure:

$ cmany c

Install

The cmany install command does what it says, and will also configure
and build if needed. i is an alias to install:

$ cmany i

The install root defaults to ./install. So assuming the project creates
a single executable named hello, the following will result:

$ ls -1
CMakeLists.txt
build/
install/
main.cpp

$ tree -fi install
install/
install/linux-x86_64-g++6.1-Release/
install/linux-x86_64-g++6.1-Release/bin/
install/linux-x86_64-g++6.1-Release/bin/hello

Choosing the build type

cmany uses Release as the default build type. To set a different build type
use --build-types/-t. The following command chooses a build type of Debug
instead of Release:

$ cmany b -t Debug

If the directory is initially empty, this will be the result:

$ ls -1 build/*
build/linux-x86_64-g++6.1-Debug/

Note that the build naming scheme will cause build trees with different build
types to be placed in different directories. Apart from producing a better
organization of your builds, this saves you a full project rebuild when the
build type changes (and the cmake generator is not a multi-config generator
like MSVC).

Choosing the compiler

cmany defaults to CMake’s default compiler. To use different compilers,
use --compilers/-c. Each argument given here must be an executable
compiler found in your path, or an absolute path to the compiler.

The following command chooses clang++ instead of CMake’s default compiler:

$ cmany b -c clang++

If the directory is initially empty, this will be the result:

$ ls -1 build/*
build/linux-x86_64-clang++3.9-Release/

Read more here.

Choosing build/install directories

By default, cmany creates the build trees nested under a directory build
which is created as a sibling of the CMakeLists.txt project file. Similarly,
the install trees are nested under the install directory. However, you
don’t have to use these defaults. The following command will use foo for
building and bar for installing:

$ cmany i -c clang++,g++ --build-dir foo --install-dir bar

$ ls -1 foo/ bar/
bar/linux-x86_64-clang++3.9-Release/
bar/linux-x86_64-g++6.1-Release/
bar/linux-x86_64-icpc16.1-Release/
foo/linux-x86_64-clang++3.9-Release/
foo/linux-x86_64-g++6.1-Release/
foo/linux-x86_64-icpc16.1-Release/

Note that foo and bar will still be placed under the current working
directory, since they are given as relative paths. cmany also accepts
absolute paths here.

Building many trees at once

The commands shown up to this point were only fancy wrappers for CMake. Since
defaults were being used, or single arguments were given, the result for each
command was a single build tree. But as its name attests to, cmany will build
many trees at once by combining the build items. For example, to build
both Debug and Release build types while using defaults for the
remaining parameters, you can do the following (resulting in 2 build trees):

$ cmany b -t Debug,Release
$ ls -1 build/
build/linux-x86_64-g++6.1-Debug/
build/linux-x86_64-g++6.1-Release/

You can also do this for the compilers (2 build trees):

$ cmany b -c clang++,g++
$ ls -1 build/
build/linux-x86_64-clang++3.9-Release/
build/linux-x86_64-g++6.1-Release/

And you can also combine all of them (4 build trees):

$ cmany b -c clang++,g++ -t Debug,Release
$ ls -1 build/
build/linux-x86_64-clang++3.9-Debug/
build/linux-x86_64-clang++3.9-Release/
build/linux-x86_64-g++6.1-Debug/
build/linux-x86_64-g++6.1-Release/

Another example – build using clang++,g++,icpc for Debug,Release,MinSizeRel build types
(9 build trees):

$ cmany b -c clang++,g++,icpc -t Debug,Release,MinSizeRel
$ ls -1 build/
build/linux-x86_64-clang++3.9-Debug/
build/linux-x86_64-clang++3.9-MinSizeRel/
build/linux-x86_64-clang++3.9-Release/
build/linux-x86_64-g++6.1-Debug/
build/linux-x86_64-g++6.1-MinSizeRel/
build/linux-x86_64-g++6.1-Release/
build/linux-x86_64-icpc16.1-Debug/
build/linux-x86_64-icpc16.1-MinSizeRel/
build/linux-x86_64-icpc16.1-Release/

The items that can be combined by cmany are called build items. cmany
has the following classes of build items:

	systems: -s/--systems sys1[,sys2[,...]]

	architectures (-a/--architectures arch1[,arch2[,...]]

	compilers (-c/--compilers comp1[,comp2[,...]]

	build types (-t/--build-types btype1[,btype2[,...]]

	variants (-v/--variants var1[,var2[,...]]

All of the arguments above accept a comma-separated list of items. Any
omitted argument will default to a list of a single item based on the current
system (for example, omitting -s in linux yields an implicit -s linux
whereas in windows yields an implicit -s windows; or omitting -a in a
64 bit processor system yields an implicit -a x86_64).

cmany will generate builds by combining every build item with every other
build item of different class. The resulting build has a name of the form
{system}-{architecture}-{compiler}-{build_type}[-{variant}].

A variant is a build item which brings with it a collection of flags. This
allows for easy combination of these flags with other build items. But note
that every build item can bring specific flags with it.

Since the number of build item combinations grows very quickly and not every
combination will make sense, cmany has arguments to exclude certain
combinations, either by the resulting build name (with a regex) or by the
names of the items that a build would be composed of. Read more about it
here.

Using flags

(Full docs for flags here).

You can set cmake cache variables using --cmake-vars/-V. For example, the
following command will be the same as if cmake -DCMAKE_VERBOSE_MAKEFILES=1
-DPROJECT_SOME_DEFINE=SOME_DEFINE= . followed by cmake --build was
used:

$ cmany b -V CMAKE_VERBOSE_MAKEFILES=1,PROJECT_SOME_DEFINE=SOME_DEFINE=

To add preprocessor macros, use the option --defines/-D:

$ cmany b -D MY_MACRO=1,FOO=bar,SOME_DEFINE

The command above has the same meaning as if cmake -D
CMAKE_CXX_FLAGS="-DMY_MACRO=1 -DFOO=bar -DSOME_DEFINE" followed by cmake
--build was used.

To add C++ compiler flags, use the command line option
--cxxflags/-X. To prevent these flags being interpreted as cmany
command options, use quotes or single quotes:

$ cmany b -X "--Wall","-O3" # add -Wall -O3 to all builds

To add C compiler flags, use the option --cflags/-C. As with C++
flags, use quotes to escape:

$ cmany b -C "--Wall","-O3"

Using flags per build item is easy. Instead of specifying the flags at the
command level as above, specify them at build item. For example:

$ cmany b --variant 'foo: --defines SOME_DEFINE=32 --cxxflags "-Os"' \
 --variant 'bar: --defines SOME_DEFINE=16 --cxxflags "-O2"'

To be clear, the foo variant will be compiled with the preprocessor
symbol named SOME_DEFINE defined to 32, and will use the -Os C++
compiler flag. In turn, the bar variant will be compiled with the
preprocessor symbol named SOME_DEFINE defined to 16, and will use the
-O2 C++ compiler flag. So instead of the build above, we now get:

$ ls -1 build
build/linux-x86_64-clang++3.9-Release-bar/
build/linux-x86_64-clang++3.9-Release-foo/

Note above the additional -foo and -bar suffixes to denote the
originating variant.

You can make build items inherit the flags from other build items: add a
@ reference to the variant you want to inherit from. For example:

$ cmany b --variant 'foo: --defines SOME_DEFINE=32 --cxxflags "-Os"' \
 --variant 'bar: @foo --defines SOME_DEFINE=16 --cxxflags "-O2"'

This will result in the bar variant having its flags specifications as
--defines SOME_DEFINE=32 --cxxflags "-Os" --defines
SOME_DEFINE=16 --cxxflags "-O2".

Cross-compiling

Cross compilation with cmake [https://cmake.org/Wiki/CMake_Cross_Compiling] requires passing a
toolchain file [https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html]. cmany
has the --toolchain option for this. This is more likely to be used as a
flag of the system or architecture build type.

Building dependencies

cmany offers the argument --deps path/to/extern/CMakeLists.txt to enable
building another CMake project which builds and installs the dependencies of
the current project. When --deps is given, the external project is built
for each configuration, and installed in the configuration’s build
directory. Use --deps-prefix to specify a different install directory for
the external project. Read more here.

Argument reuse

Due to the way that compilation flags are accepted, the full form of a cmany
command can become big. To save you from retyping the command, you can set
the CMANY_ARGS environment variable to reuse arguments to cmany. As an
experimental (and buggy) feature, you can also permanently store these
options in a cmany.yml project file, which should be placed side by side
with the project CMakeLists.txt. You can find more about this here.

Exporting build configurations

cmany has the command export_vs, which exports the build configurations
to Visual Studio through the file CMakeSettings.json (placed side by side
with the project CMakeLists.txt). Read this MS blog post [https://blogs.msdn.microsoft.com/vcblog/2016/10/05/cmake-support-in-visual-studio/]
to discover how to use the generated file.

For code-intelligence tools requiring knowledge of the compilation commands
(for example, rtags, and many other tools used with emacs), cmany offers also
the argument -E/--export-compile. This argument will instruct cmake to
generate the file compile_commands.json (placed in each build tree).

Build items

(You can read this document with the command cmany help build_items).

cmany creates its builds by combining build items. There are the following
classes of build items:

	systems: -s/--systems sys1[,sys2[,...]]

	architectures: -a/--architectures arch1[,arch2[,...]]

	compilers: -c/--compilers comp1[,comp2[,...]]

	build types: -t/--build-types btype1[,btype2[,...]]

	variants: -v/--variants var1[,var2[,...]]

All of the arguments above accept a comma-separated list of items (but note
that no spaces should appear around the commmas). Repeated invokation of an
argument has the same effect. For example, -c g++,clang++ is the same as
-c g++ -c clang++.

Any omitted argument will default to a list of a single item based on the
current system (for example, omitting -s in linux yields an implicit -s
linux whereas in windows yields an implicit -s windows; or omitting
-a in a 64 bit processor system yields an implicit -a x86_64).

cmany will generate builds by combining every build item with every other
build item of different class. The resulting builds have a name of the form
{system}-{architecture}-{compiler}-{build_type}[-{variant}].

Since the number of combinations grows very quickly and not every combination
will make sense, cmany has arguments to exclude certain combinations, either
by the resulting build name (with a regex) or by the names of the items that
a build would be composed of. Read more about it here.

The following sections address each of these build items in more detail.

Per-item flags

To make a build item bring with it a set of properties (which can be compiler
flags, macros, cmake flags, or combination exclusion arguments), use the
following syntax: 'item_name: <flag_specs>....' instead of just
item_name. This will prompt cmany to use those flags whenever that build
item is used in a build. For example, you can add a flag only to a certain
build type:

$ cmany b --build-types Release,'Debug: --cxxflags "-Wall"'

Note the use of the quotes; this is necessary to have the arguments correctly
parsed:

	The outer quotes (single quotes in this case) are necessary for
causing the full specification of the Debug build type to be considered
at once.

	The inner quotes around the -Wall flag in the Debug configuration
are needed to prevent it from being parsed as an argument to cmany, which
would cause an error.

	The order of the quotes is irrelevant to cmany. The Debug configuration
could also have been specified as "Debug: --cxxflags '-Wall'".

	You can also escape the quotes using the backslash character. For example,
you can do "Debug: --cxxflags \"-Wall\"" or 'Debug: --cxxflags
\'-Wall\''.

See the cmany help on flags to discover what flags can be
used with build items. Note also that exclusion flags can also be used as per-item flags.

When creating the flags for the build, the order in the final compile command
is the following:

	command-level flags

	system flags

	architecture flags

	compiler flags

	build type flags

	variant flags

So command level flags come first and variant flags come last in the compiler
command line. Note that flags from later build items override those of
earlier build items. For example, variant flags override flags from the build
type; these in turn override flags specified with the compiler, and so on.

Inheriting per-item flags

To make a build item inherit all the flags in another build item, reference
the base item name prefixed with @. The result is that the inheriting
item will have all the flags of the base item, plus its own flags inserted at
the point where the @ reference occurs. combination flags are not inherited.

For example, note the @foo spec in the bar variant:

$ cmany b -v none \
 -v 'foo: --defines SOME_DEFINE=32 --cxxflags "-Os"' \
 -v 'bar: @foo --defines SOME_DEFINE=16 -cxxflags "-O2"'

With this command, bar will be now consist of -D
SOME_DEFINE=32,SOME_DEFINE=16 -X "-Os","-O2"'.

Note

Order matters here: the place where the inheritance directive
occurs is relevant. For example:

$ cmany b -v none \
 -v 'foo: --defines SOME_DEFINE=32 --cxxflags "-Os"' \
 -v 'bar: --defines SOME_DEFINE=16 -cxxflags "-O2" @foo'

will make bar consist instead of -D SOME_DEFINE=16,SOME_DEFINE=32 -X
"-O2","-Os". So here SOME_DEFINE will have with a value of 16, as
opposed to 32 which will be the value in the previous example. This happens
because cmany will insert foo’s options right in the place where @foo
appears.

Compilers

cmany defaults to CMake’s default compiler. To use different compilers,
use --compilers/-c. Each argument given here must be an executable
compiler found in your path, or an absolute path to the compiler.

The following command chooses clang++ instead of CMake’s default compiler:

$ cmany b -c clang++

If the directory is initially empty, this will be the result:

$ ls -1 build/*
build/linux-x86_64-clang++3.9-Release/

Note that cmany will query the compiler for a name and a version. This is for
ensuring the use of different build trees for different versions of the same
compiler. The logic for extracting the compiler name/version may fail in some
cases, so open an issue if you see problems here.

Microsoft Visual Studio

Picking the Visual Studio version with CMake is harder than it should
be. cmany tries to make this easier to do. For example, this
will use Visual Studio 2015 in the native architecture:

$ cmany b -c vs2015
$ ls -1 build/*
build/windows-x86_64-vs2015-Release/

as opposed to the option required by CMake, which would be -G "Visual
Studio 15 2017 Win64"). So if cmany is running in a 32 bit system, then the
result of running the command above will be a 32 bit build instead:

$ cmany b -c vs2015
$ ls -1 build/*
build/windows-x86-vs2015-Release/

An explicit request for the target architecture may be made by appending a
_32 or _64 suffix. For example, if Visual Studio 2017 in 32 bit mode
is desired, then simply use vs2017_32:

$ cmany b -c vs2017_32
$ ls -1 build/*
build/windows-x86-vs2017-Release/

You can also choose the VS toolset to use in the compiler name. For example,
compile with the clang frontend (equivalent in this case to cmake’s -T
v141_clang_c2 option):

$ cmany b -c vs2017_clang
$ ls -1 build/*
build/windows-x86-vs2017_clang-Release/

cmany allows you to create any valid combination of the Visual Studio project
versions (from vs2017 to vs2005), target architectures (32, 64, arm, ia64)
and toolsets (from v141 to v80, with clang_c2 and xp variants). The general
form for the cmany VS specification alias is:

<vs_project_version>[_<vs_platform_version>][_<vs_toolset_version>]

Note that the order must be exactly as given. Note also that the platform
version or the toolset version can be omitted, in which case a sensible
default will be used:

	if the platform is omitted, then the current platform will be used

	if the toolset is omitted, then the toolset of the given project version
will be used.

Given the many VS versions, target architectures and toolsets, this creates
hundreds of possible aliases, so read the complete documentation for
Visual Studio.

Build types

cmany uses Release as the default build type. To set a different build
type use --build-types/-t. The following command chooses a build type of
Debug instead of Release:

$ cmany b -t Debug

If the directory is initially empty, this will be the result:

$ ls -1 build/*
build/linux-x86_64-g++6.1-Debug/

Note that the build naming scheme will cause build trees with different build
types to be placed in different directories. Apart from producing a better
organization of your builds, this saves you a full project rebuild when the
build type changes (and the cmake generator is not a multi-config generator
like MSVC).

Variants

cmany has variants for setting up a bundle of flags to be
combined with all other build items.

A variant is a build item different from any other which uses a specific
combination of flags via --cmake-vars/-V, --defines/-D, --cxxflags/-X,
--cflags/-C. Like all other build items, it will be combined with other
build items of different class. With the exception of the null variant,
variants will usually have per-item flags.

The command option to setup a variant is --variant/-v and should be used
as follows: --variant 'variant_name: <variant_specs>'. For example,
assume a vanilla build:

$ cmany b

which will produce the following tree:

$ ls -1 build
build/linux-x86_64-clang3.9-Release/

If instead of this we want to produce two variants foo and bar with
specific defines and compiler flags, the following command should be used:

$ cmany b --variant 'foo: --defines SOME_DEFINE=32 --cxxflags "-Os"' \
 --variant 'bar: --defines SOME_DEFINE=16 --cxxflags "-O2"'

or, in short form:

$ cmany b -v 'foo: -D SOME_DEFINE=32 -X "-Os"' \
 -v 'bar: -D SOME_DEFINE=16 -X "-O2"'

To be clear, the foo variant will be compiled with the preprocessor symbol
named SOME_DEFINE defined to 32, and will use the -Os C++ compiler
flag. In turn, the bar variant will be compiled with the preprocessor
symbol named SOME_DEFINE defined to 16, and will use the -O2 C++
compiler flag. So instead of the build above, we now get:

$ ls -1 build
build/linux-x86_64-clang3.9-Release-bar/
build/linux-x86_64-clang3.9-Release-foo/

Variants will be combined, just like compilers or build types. So applying
the former two variants to the 9-build example above will result in 18
builds (3 compilers * 3 build types * 2 variants)

$ cmany b -c clang++,g++,icpc -t Debug,Release,MinSizeRel \
 --variant 'foo: -D SOME_DEFINE=32 -X "-Os"' \
 --variant 'bar: -D SOME_DEFINE=16 -X "-O2"'
$ ls -1 build/
build/linux-x86_64-clang3.9-Debug-bar/
build/linux-x86_64-clang3.9-Debug-foo/
build/linux-x86_64-clang3.9-MinSizeRel-bar/
build/linux-x86_64-clang3.9-MinSizeRel-foo/
build/linux-x86_64-clang3.9-Release-bar/
build/linux-x86_64-clang3.9-Release-foo/
build/linux-x86_64-gcc6.1-Debug-bar/
build/linux-x86_64-gcc6.1-Debug-foo/
build/linux-x86_64-gcc6.1-MinSizeRel-bar/
build/linux-x86_64-gcc6.1-MinSizeRel-foo/
build/linux-x86_64-gcc6.1-Release-bar/
build/linux-x86_64-gcc6.1-Release-foo/
build/linux-x86_64-icc16.1-Debug-bar/
build/linux-x86_64-icc16.1-Debug-foo/
build/linux-x86_64-icc16.1-MinSizeRel-bar/
build/linux-x86_64-icc16.1-MinSizeRel-foo/
build/linux-x86_64-icc16.1-Release-bar/
build/linux-x86_64-icc16.1-Release-foo/

Note that like any other build item --variant/-v also accepts
comma-separated arguments:

$ cmany b -c clang++,g++,icpc -t Debug,Release,MinSizeRel \
 --variant 'foo: -D SOME_DEFINE=32 -X "-Os"','bar: -D SOME_DEFINE=16 -X "-O2"'

Null variant

cmany will combine only the variants it is given. Notice above that the basic
(variant-less) build linux-x86_64-clang3.9-Debug is not there. To retain
the basic build without a variant suffix use the special name none:

$ cmany b -v none \
 -v 'foo: -D SOME_DEFINE=32 -X "-Os"' \
 -v 'bar: -D SOME_DEFINE=16 -X "-O2"'
$ ls -1 build
build/linux-x86_64-clang3.9-Release/
build/linux-x86_64-clang3.9-Release-bar/
build/linux-x86_64-clang3.9-Release-foo/

You can add flags to the none variant as well, and use inheritance at will:

$ cmany b -v 'none: -X "-Wall"' \
 -v 'foo: @none -D SOME_DEFINE=32 -X "-Os"' \
 -v 'bar: @none -D SOME_DEFINE=16 -X "-O2"'

Systems

The argument to specify system build items is -s/--systems. Systems are a
special build item. For example, if you are on linux, omitting -s will
default to -s linux, so using -s it is not really needed. But
compiling for a different target system qualifies as cross compilation [https://cmake.org/Wiki/CMake_Cross_Compiling] and requires a cmake
toolchain file [https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html] (for
which cmany offers the -T/--toolchain flag).

Usually, a toolchain also fixes the compiler and maybe the processor
architecture. So most of the time, whenever -s/--systems is used, it will
bring with it a toolchain and will also require exclusion arguments to prevent combination of the target system with
compilers or architectures different from those of the toolchain.

For example, consider this linux ARM gnueabihf cmake toolchain:

arm-linux-gnueabihf.cmake

set(CMAKE_SYSTEM_NAME Linux)
set(CMAKE_SYSTEM_VERSION 1)

set(CMAKE_C_COMPILER /usr/bin/arm-linux-gnueabihf-gcc)
set(CMAKE_CXX_COMPILER /usr/bin/arm-linux-gnueabihf-g++)
set(CMAKE_STRIP /usr/bin/arm-linux-gnueabihf-strip)

set(CMAKE_FIND_ROOT_PATH /usr/arm-linux-gnueabihf)

set(CMAKE_FIND_ROOT_PATH_MODE_PROGRAM NEVER)
set(CMAKE_FIND_ROOT_PATH_MODE_LIBRARY ONLY)
set(CMAKE_FIND_ROOT_PATH_MODE_INCLUDE ONLY)

(If you are using Ubuntu you can install these tools with sudo apt-get
install binutils-arm-linux-gnueabihf g++-arm-linux-gnueabihf). When you
want to compile your project only for linux OS and (armv5,armv7)
architectures, this would be the command line:

$ cmany b --systems 'linux: -T arm-linux-gnueabihf.cmake' \
 --architectures 'armv5: -X "-march=armv5"' \
 --architectures 'armv7: -X "-march=armv7"'

which will produce the following builds:

linux-armv5-arm-linux-gnueabihf-g++5.4-Release
linux-armv7-arm-linux-gnueabihf-g++5.4-Release

If you want to build at the same time for x86 and x86_64, this command could
be used (note the use of --exclude-builds):

$ cmany b --systems linux \
 --architectures x86,x86_64 \
 --systems 'linux_arm: -T arm-linux-gnueabihf.cmake -xa x86,x86_64' \
 --architectures 'armv5: -X "-march=armv5"' \
 --architectures 'armv7: -X "-march=armv7"' \
 --exclude-builds 'linux_arm-.*x86','linux-.*arm'

which produces the following builds:

linux-x86-g++5.4-Release
linux-x86_64-g++5.4-Release
linux_arm-armv5-arm-linux-gnueabihf-g++5.4-Release
linux_arm-armv7-arm-linux-gnueabihf-g++5.4-Release

The arm builds for linux now use a system named linux_arm to prevent
ambiguity with the native linux system. The --exclude-builds is
used to prevent the arm toolchain from being combined with x86 or x86_64
architectures and also to prevent the arm architectures from being used
without a toolchain.

Architectures

Architectures are specified with the argument -a/--architectures. When
the architecture argument is omitted, cmany will silently default to -a
<current_architecture>.

Like with -s/--systems, architectures have some special properties:

	When in a 64 bit system, asking for a x86 architecture when the
compiler is a gcc-like compiler (ie, gcc, clang, icc, zapcc or similar)
will result in the the compiler flag -m32 being added to
CMAKE_CXX_FLAGS and CMAKE_C_FLAGS.

	Conversely, when in a 32 bit system, asking for a x86_64 architecture
with a gcc-like compiler will result in the flag -m64 being added to
CMAKE_CXX_FLAGS and CMAKE_C_FLAGS.

	When using Visual Studio, you can select the compiler and architecture at
once. For example, using -c vs2015_32,vs2015_64 will compile both for
x86 and x86_64, and is equivalent to -c vs2015 -a x86,x86_64.

Architectures other than x86/x86_64, as with -s/--systems,
-a/--architectures will usually need cross-compilation and thus require
toolchains. In fact the, command used in the example of the Systems
section can be simplified if the toolchain is specified by architecture
instead of the system, and the variants instead provide the -m compiler
flags:

$ cmany b --architectures x86,x86_64,'arm: -T arm-linux-gnueabihf.cmake' \
 --variants 'none: -xa arm' \
 --variants 'armv5: -X "-march=armv5" -ia arm' \
 --variants 'armv7: -X "-march=armv7" -ia arm'

The -xa and the -ia arguments above are the short forms of
respectively the exclusion arguments
--exclude-architectures and --include-architectures. They are needed
to prevent combination of the arm variants with the x86 architectures and
vice-versa. The resulting builds are exactly the same as in that example, but
are now named differently because of the variants:

linux-x86-g++5.4-Release
linux-x86_64-g++5.4-Release
linux-arm-arm-linux-gnueabihf-g++5.4-Release-armv5
linux-arm-arm-linux-gnueabihf-g++5.4-Release-armv7

Excluding builds

cmany accepts arguments for excluding certain combinations of build
items. These arguments specify combination exclusion rules which apply either
to a build’s name or to the individual build items of which the build is
composed.

When multiple combination arguments are given, they are processed in the
order in which they are given. A build is then included if it successfully
matches every argument.

Be aware that for added convenience, cmany offers the commands
show_build_names and show_builds, which are useful for testing the
input arguments.

Excluding builds by item name

To exclude a build based on its composing items, cmany offers the
following arguments, which should be fairly self-explaining:

	
	systems (-s/--systems):

	
	-xs/--exclude-systems sys1[,sys2[,...]]

	-is/--include-systems sys1[,sys2[,...]]

	
	architectures (-a/--architectures):

	
	-xa/--exclude-architectures arch1[,arch2[,...]]

	-ia/--include-architectures arch1[,arch2[,...]]

	
	compilers (-c/--compilers):

	
	-xc/--exclude-compilers comp1[,comp2[,...]]

	-ic/--include-compilers comp1[,comp2[,...]]

	
	build types (-t/--build-types):

	
	-xt/--exclude-build-types btype1[,btype2[,...]]

	-it/--include-build-types btype1[,btype2[,...]]

	
	variants (-v/--variants):

	
	-xv/--exclude-variants var1[,var2[,...]]

	-iv/--include-variants var1[,var2[,...]]

Each argument receives a comma-separated list of item names. These names are
matched literally to the name of any item of the same type, and the
prospective build (which would combine those items) is included or excluding
according to the rule.

Also note the mnemonic for the build item arguments: the letter you use to
specify a build item is the letter after the short form of the include or
exclude flag.

Excluding builds by build name

These are the arguments to prevent a build by matching against the build’s
final name:

	-xb/--exclude-builds rule1[,rule2[,...]]: excludes a build if its
name matches any of the rules

	-ib/--include-builds rule1[,rule2[,...]]: includes a build only if
its name matches any of the rules

	-xba/--exclude-builds-all rule1[,rule2[,...]]: excludes a build if
its name matches all of the rules

	-iba/--include-builds-all rule1[,rule2[,...]]: includes a build only
if its name matches all of the rules

As noted above, each argument accepts a comma-separated list of Python
regular expressions [https://docs.python.org/3/library/re.html] that will
be used as matching rules to each build name. A build is included only if its
name successfully matches every combination argument. Note that the form of a
build’s name is
{system}-{architecture}-{compiler}-{build_type}[-{variant}]. Note also
the presence of the hyphen separating the build items; it can be used to
distinguish between similarly named items such as x86 and x86_64.

The rules do not need to be regular expressions: passing the full names of
the builds to the argument works as expected.

Examples

As a first example, consider this command which addresses 12 builds by combining 2
architectures, 2 build types and 3 variants:

$ cmany show_build_names -a x86,x86_64 -t Debug,Release \
 -v none,'foo: -D FOO','bar: -D BAR'
linux-x86-g++5.4-Debug
linux-x86-g++5.4-Debug-foo
linux-x86-g++5.4-Debug-bar
linux-x86-g++5.4-Release
linux-x86-g++5.4-Release-foo
linux-x86-g++5.4-Release-bar
linux-x86_64-g++5.4-Debug
linux-x86_64-g++5.4-Debug-foo
linux-x86_64-g++5.4-Debug-bar
linux-x86_64-g++5.4-Release
linux-x86_64-g++5.4-Release-foo
linux-x86_64-g++5.4-Release-bar

Now, if we want to exclude foo variants of the x86 architecture, we
can use:

$ cmany show_build_names -a x86,x86_64 -t Debug,Release \
 -v none,'foo: -D FOO','bar: -D BAR' \
 --exclude-builds '.*x86-.*foo'
linux-x86-g++5.4-Debug
linux-x86-g++5.4-Debug-bar # NOTE: no x86 foo variant
linux-x86-g++5.4-Release
linux-x86-g++5.4-Release-bar # NOTE: no x86 foo variant
linux-x86_64-g++5.4-Debug
linux-x86_64-g++5.4-Debug-foo
linux-x86_64-g++5.4-Debug-bar
linux-x86_64-g++5.4-Release
linux-x86_64-g++5.4-Release-foo
linux-x86_64-g++5.4-Release-bar

Note the hyphen appearing in the regular expression passed to
--exclude-builds '.*x86-.*foo'. This prevents it from matching
x86_64. As noted above, the name of the build is obtained by separating
the build items of which it is composed with an hyphen. If this regular
expression did not have the hyphen and was instead .*x86.*foo, then it
would match both x86 and x86_64, with the result that no builds would
contain the foo variant.

For the previous example, it is actually easier to have the foo variant
directly exclude the x86 architecture. The result is exactly the same:

$ cmany show_builds -a x86,x86_64 -t Debug,Release \
 -v none,'foo: -D FOO -xa x86','bar: -D BAR'

You could instead have the x86 architecture exclude the foo variant,
with the same result:

$ cmany show_builds -a 'x86: -xv foo',x86_64 -t Debug,Release \
 -v none,'foo: -D FOO','bar: -D BAR' \

The logical opposite of --exclude-builds is naturally
--include-builds:

$ cmany show_builds -a x86,x86_64 -t Debug,Release \
 -v none,'foo: -D FOO','bar: -D BAR' \
 --include-builds '.*x86-.*foo'
linux-x86-g++5.4-Debug-foo
linux-x86-g++5.4-Release-foo

This can also be done with the following command:

$ cmany show_builds -a x86,x86_64 -t Debug,Release \
 -v none,'foo: -D FOO','bar: -D BAR' \
 -ia x86 -iv foo

If you are wondering about the usefulness of the -i*/--include arguments,
consider that the compile-edit loop is usually repeated many times. Being
that the arguments to cmany usually come to a certain degree of complexity
(something which Project mode also addresses),
rewriting them every time is something we would like to avoid. So when you
want to narrow down your previous command (or your project setup) just to a
certain combination of builds, the --include-* arguments usually come in
very handy.

Like all the arguments above, item combination arguments can be used both at
the cmany command level or at each build item level.

You may have noticed that it does not make much sense to provide the
--include-* arguments in a build item specification, as combination is
implied for every build item. However, being able to use these at the scope
of the command is certainly useful, either as a form of saving extensive
editing when reusing complicated cmany commands (for example in shell
sessions), or with Project mode.

Flags

cmany allows you to transparently pass flags to all or some of the builds.
These flags can be compiler flags, preprocessor defines or CMake cache
variables. Specifying flags is an important cmany usage pattern, which is
used also when specifying Per-item flags.

Note

The examples below apply the flags across the board to all the
individual builds produced with the cmany command. For example, this will
add -Wall to all of the 9 resulting builds:

$ cmany b --compilers clang++,g++,icpc \
 --build-types Debug,Release,MinSizeRel \
 --cxxflags "-Wall"

If you want to add flags only to certain builds, it’s cool! One of the
main motivations of cmany is being able to easily do that, and it offers
two different solutions. You can use variants. You can
also set flags per Per-item flags, so that when one specific
build item (such as a compiler or operating system) is used, then the
flags are also used in the resulting build.

CMake cache variables

To set cmake cache variables use --cmake-vars/-V. For example:

$ cmany b -V CMAKE_VERBOSE_MAKEFILE=1,PROJECT_FOO=BAR

This is equivalent to the following sequence of commands:

$ cmake -D CMAKE_VERBOSE_MAKEFILE=1 -D PROJECT_FOO=BAR ../..
$ cmake --build .

Note the use of the comma to separate the variables. This is for consistency
with the rest of the cmany options, namely (for example) those selecting
compilers or build types. You can also use separate invocations:

$ cmany b -V CMAKE_VERBOSE_MAKEFILE=1 -V PROJECT_FOO=BAR

which will have the same result as above.

When specified as above, CMake cache variables will apply to all builds. If
you want to add CMake cache variables only to certain builds by associating
them with particular build items, you can use the pattern 'item_name:
<flags...>'. For example, this will enable the cmake variable
ENABLE_X64_ASM only when x86_64 is used:

$ cmany b -s x86,'x86_64: -V ENABLE_X64_ASM=1'

CMake’s cache variables are typed, and this sometimes can affect subtly the
outcome of a build. cmany will try to guess the type variable type (ie,
whether it is a BOOL, PATH, FILEPATH or STRING), based on its
name and value. You can override this behaviour by using the standard CMake
syntax for specifying the variable type:

$ cmany b -V CMAKE_VERBOSE_MAKEFILE:BOOL=1,PROJECT_FOO:STRING=BAR

Preprocessor macros

To add preprocessor macros, use the option --defines/-D:

$ cmany b -D MY_MACRO=1,FOO=BAR

The command above has the same meaning of:

$ cmake -D CMAKE_CXX_FLAGS="-D MYMACRO=1 -D FOO=BAR" ../..
$ cmake --build .

Note also that --defines/-D can be used repeatedly, with the same
result:

$ cmany b -D MY_MACRO=1 -D FOO=BAR

To add macros only to certain build items, use the 'item_name:
<flags...>' pattern. For example, this will add the macro XDEBUG only
to the Debug build type:

$ cmany b -t Release,'Debug: -D XDEBUG'

C++ compiler flags

To add C++ compiler flags to a cmany build, use the option
--cxxflags/-X. To prevent these flags being interpreted as cmany
command options, use quotes or single quotes (or flag aliases, see below):

$ cmany b -X "-Wall","-O3" # add -Wall -O3 to all builds

The command above has the same meaning of:

$ cmake -D CMAKE_CXX_FLAGS="-Wall -O3" ..
$ cmake --build .

Note that --cxxflags/-X can be used repeatedly, with the same result:

$ cmany b -X "-Wall" -X "-O3"

To add C++ compiler flags only to certain build items, use the 'item_name:
<flags...>' pattern. For example, this will add the -ffast-math flag
only to the Release build type:

$ cmany b -t 'Release: -X "-ffast-math"',Debug

C compiler flags

To add C compiler flags, use the option --cflags/-C. As with C++
flags, to prevent interpretation by cmany, use single or double quotes to
escape the compiler flags (or use flag aliases, see below):

$ cmany b -C "-Wall","-O3"

The command above has the same meaning of:

$ cmake -D CMAKE_C_FLAGS="-Wall -O3" ..
$ cmake --build .

Note that --cflags/-C can be chained, with the same result:

$ cmany b -C "-Wall" -C "-O3"

To add C compiler flags only to certain build items, use the 'item_name:
<flags...>' pattern. For example, this will add the -ffast-math flag
only to the Release build type:

$ cmany b -t 'Release: -C -ffast-math',Debug

Linker flags

For now, cmany has no explicit support for linker flags. But you can set
linker flags through the cmake cache variable mechanism:

$ cmany b -V '-DCMAKE_LINKER_FLAGS="....linker flags...."'

You may also have noticed that CMake cache variables will allow you to
specify macros and compiler flags as well via -DCMAKE_CXX_FLAGS=.... Yes,
that’s right, you can also do that. But not only is it less verbose when
passing macros and flags through --defines/--cflags/--cxxflags: there is
a strong reason to prefer it this way: flag aliases, introduced below.

Flag aliases

For simplicity of use, cmany comes with a predefined set of flag aliases
which you can use. A flag alias is a name which maps to specific flags for
each compiler. For example, if you want to enable maximum warnings there is
the wall alias (shown here in the yml markup which cmany uses to define
it):

wall:
 desc: turn on all warnings
 gcc,clang,icc: -Wall
 vs: /Wall

or eg the avx alias if you want to enable AVX SIMD processing:

avx:
 desc: enable AVX instructions
 gcc,clang,icc: -mavx
 vs: /arch:avx

This allows use of the aliases instead of the flags directly, thus insulating
you from differences between compilers. Using the aliases will also produce
easier commands, because less quoting is needed to prevent the flags from
being read by the shell. For example, the following command will translate to
g++ -mavx -Wall with gcc, clang or icc, but with Visual Studio it will
translate instead to cl.exe /Wall /arch:avx:

$ cmany b --cxxflags avx,wall

As a comparison, direct use of the flags would result in these commands:

$ cmany b --cxxflags '-Wall','-mavx' # for gcc
$ cmany b --cxxflags '/Wall','/arch:avx' # for VS

Note that flag aliases are translated only when they are given through
--cxxflags/-cflags. Do not use aliases with --cmake-vars
CMAKE_CXX_FLAGS=..., as cmany will not translate them there.

Built-in flag aliases

cmany provides some built-in flag aliases to simplify working with different
compilers at the same time. Currently, you can see them in the file
conf/cmany.yml (see the current version at github [https://github.com/biojppm/cmany/blob/master/conf/cmany.yml]).

Defining more flag aliases

Being able to define your own flag aliases is in the roadmap. For now, you
can submit PRs for adding aliases.

Toolchains

To use cmake toolchain use the option -T/--toolchain. Usually, this
will be done inside a systems build item, -s/--systems; see the
Systems section in the build items document.

Build exclusion arguments

Note that arguments for excluding builds can be
used wherever flag arguments can be used. This makes it easier to declare
incompatibility between build items. See an example in this help page.

Using cmany with Visual Studio

TL;DR

The general form for choosing the Visual Studio compiler version with cmany
is:

<vs_version>[_<architecture>][_<vs_toolset>]

where:

	<vs_version> is one of vs2019, vs2017, vs2015, vs2013, vs2012,
vs2010, vs2008 or vs2005

	<architecture> is one of 32, 64, arm, ia64. Defaults to
the native architecture when omitted.

	
	as for <vs_toolset>:

	
	when omitted, uses the default toolset of the chosen VS version

	when either clang or xp is given, uses the default toolset of
the chosen VS version for either clang or xp

	
	otherwise, one of:

	
	from vs2019: v142, v142_clang, v142_clang_c2, v142_xp

	from vs2017: v141, v141_clang, v141_clang_c2, v141_xp

	from vs2015: v140, v140_clang, v140_clang_c2, v140_xp

	from vs2013: v120, v120_xp

	from vs2012: v110, v110_xp

	from vs2010: v100, v100_xp

	from vs2008: v90, v90_xp

	from vs2008: v80

	Note that not every combination is valid:

	
	you cannot use toolsets newer than your chosen VS version

	arm is not available in VS versions older than VS2012

	ia64 is not available in VS versions later than VS2012

	clang is not available in versions older than VS2015.

Note

cmany defaults to using the native architecture when no target
architecture is specified. For example, the command cmany b -c
vs2015 will produce a 64 bit build when it is run in a 64 bit
system; but when it is run in a 32 bit system it will produce a 32 bit
build.

This contrasts with cmake: cmake -G "Visual Studio 15 2017"
../.. will produce a 32 bit build in any system.

VS alias examples

	vs2015: depending on the native architecture, same as cmake -G
"Visual Studio 14 2015" OR cmake -G "Visual Studio 14 2015 Win64"

	vs2015_clang: ditto, but use the v140_clang_c2 toolset

	vs2015_arm: same as cmake -G "Visual Studio 14 2015 ARM"

	vs2015_32_clang: same as cmake -G "Visual Studio 14 2015" -T v140_clang_c2

	vs2015_64_clang: same as cmake -G "Visual Studio 14 2015 Win64" -T v140_clang_c2

	vs2017_64_v140: same as cmake -G "Visual Studio 15 2017 Win64" -T
v140. This will generate a VS2017 solution for x86_64 which is compiled
with the v140 toolset which is from VS2015.

Complete explanation

Visual Studio (VS) has an awkward numbering system: the year and the version
number (it also has a different version number for the cl.exe compiler,
but fortunately we have no need to deal with that here). Sadly, and
confusingly, these have similar values, and cmake forces you to deal with
this by having to explicitly state the full Visual Studio version and year.

cmany tries to help in this situation by making it easier to specify which
Visual Studio IDE version and toolset version to use via a simple naming
scheme. For example, this will create two VS projects in the native
architecture (eg, x86_64), but with different versions:

$ cmany b -c vs2015,vs2017,vs2019

As usual, this would be the result the command:

$ ls -1 build/*
build/windows-x86_64-vs2015-Release/
build/windows-x86_64-vs2017-Release/
build/windows-x86_64-vs2019-Release/

For comparison, to achieve this with direct use of CMake, the equivalent
(bash) commands would have to be:

$ mkdir build/windows-x86_64-vs2015-Release
$ mkdir build/windows-x86_64-vs2017-Release
$ mkdir build/windows-x86_64-vs2019-Release
$ cd build/windows-x86_64-vs2015-Release
$ cmake -G "Visual Studio 14 2015 Win64" ../..
$ cd -
$ cd build/windows-x86_64-vs2017-Release
$ cmake -G "Visual Studio 15 2017 Win64" ../..
$ cd -
$ cd build/windows-x86_64-vs2019-Release
$ cmake -G "Visual Studio 15 2019 Win64" ../..
$ cd -

A further point of confusion with Visual Studio is that a given VS solution
version actually consists of two separate items: a) the compiler version (the
toolset) and b) the IDE version. When you run eg cmake -G "Visual Studio 14
2015" you get a solution for editing your code with the 2015 IDE, and
your code will be compiled with Visual Studio 2015’s default toolset which is
v140. But you do not have to use this toolset when using the VS 2015
IDE. For example, you can generate a 2015 solution which uses the 2013
toolset, v120. To do that in CMake, the command would be cmake -G
"Visual Studio 14 2015" -T v120.

The issue of the Visual Studio toolsets was made less of a corner case with
the recent addition (since VS 2015) of a clang frontend, which is convenient
for multi-compiler validation of a project’s code. So making it easier to
specify non-standard VS toolsets was also from the outset a requirement for
cmany.

Aliasing scheme

cmany allows you to create any valid combination of the Visual Studio project
versions (from vs2017 to vs2005), target architectures (32, 64, arm, ia64)
and toolsets (from v141 to v80, with clang_c2 and xp variants). The general
form for the cmany VS alias is:

<vs_version>[_<vs_platform>][_<vs_toolset>]

Note that the platform or the toolset can be omitted, in which case a sensible
default will be used:

	if the platform is omitted, then the current platform will be used

	if the toolset is omitted, then the toolset of the given project version
will be used.

Note also that the order must be exactly as given: first the VS version, then
the platform, then the toolset. For example, when the platform is omitted,
then the alias should have the following form:

<vs_version>[_<vs_toolset>]

When the toolset is omitted, then the alias should have the form:

<vs_version>[_<vs_platform>]

If both the architecture and platform are omitted, then the alias becomes simply:

<vs_version>

Check the VS alias examples for seeing this scheme at
work. The next subsections give a complete enumeration of the possible values
for each item in the triplet.

Visual Studio versions

Here’s a correspondence between the basic cmany names and the cmake
specification. CMake simultaneously specifies the VS version and the target
architecture.

	cmany

	cmake

	target architecture

	vs2019

	Visual Studio 16 2019 ???

	native, ie 32 or 64 bits

	vs2019_32

	Visual Studio 16 2019

	x86

	vs2019_64

	Visual Studio 16 2019 Win64

	x86_64

	vs2019_arm

	Visual Studio 16 2019 ARM

	arm

	vs2017

	Visual Studio 15 2017 ???

	native, ie 32 or 64 bits

	vs2017_32

	Visual Studio 15 2017

	x86

	vs2017_64

	Visual Studio 15 2017 Win64

	x86_64

	vs2017_arm

	Visual Studio 15 2017 ARM

	arm

	vs2015

	Visual Studio 14 2015 ???

	native, ie 32 or 64 bits

	vs2015_32

	Visual Studio 14 2015

	x86

	vs2015_64

	Visual Studio 14 2015 Win64

	x86_64

	vs2015_arm

	Visual Studio 14 2015 ARM

	arm

	vs2013

	Visual Studio 12 2013 ???

	native, ie 32 or 64 bits

	vs2013_32

	Visual Studio 12 2013

	x86

	vs2013_64

	Visual Studio 12 2013 Win64

	x86_64

	vs2013_arm

	Visual Studio 12 2013 ARM

	arm

	vs2012

	Visual Studio 11 2012 ???

	native, ie 32 or 64 bits

	vs2012_32

	Visual Studio 11 2012

	x86

	vs2012_64

	Visual Studio 11 2012 Win64

	x86_64

	vs2012_arm

	Visual Studio 11 2012 ARM

	arm

	vs2010

	Visual Studio 10 2010 ???

	native, ie 32 or 64 bits

	vs2010_32

	Visual Studio 10 2010

	x86

	vs2010_64

	Visual Studio 10 2010 Win64

	x86_64

	vs2010_ia64

	Visual Studio 10 2010 IA64

	ia64

	vs2008

	Visual Studio 9 2008 ???

	native, ie 32 or 64 bits

	vs2008_32

	Visual Studio 9 2008

	x86

	vs2008_64

	Visual Studio 9 2008 Win64

	x86_64

	vs2008_ia64

	Visual Studio 9 2008 IA64

	ia64

	vs2005

	Visual Studio 8 2005 ???

	native, ie 32 or 64 bits

	vs2005_32

	Visual Studio 8 2005

	x86

	vs2005_64

	Visual Studio 8 2005 Win64

	x86_64

Target architecture

From the list above, it is easy to gather the list of valid architecture
names in cmany’s VS aliasing scheme:

	32

	64

	arm

	ia64

Visual Studio toolset

Here’s the list of valid Visual Studio toolsets:

	vs2019 compiler toolsets: v142, v142_clang_c2, v142_xp

	vs2017 compiler toolsets: v141, v141_clang_c2, v141_xp

	vs2015 compiler toolsets: v140, v140_clang_c2, v140_xp

	vs2013 compiler toolsets: v120, v120_xp

	vs2012 compiler toolsets: v110, v110_xp

	vs2010 compiler toolsets: v100, v100_xp

	vs2008 compiler toolsets: v90, v90_xp

	vs2005 compiler toolsets: v80,

cmany allows several shorter forms for specifying some of these toolsets:

	the default toolset can be omitted. For example, vs2017 is exactly the
same as vs2017_v141, and vs2013 is exactly the same as vs2013_v120

	the clang toolset can be shortened to clang instead of
clang_c2. Also, omitting the version from a clang toolset will default
to the current VS version’s toolset. So for example, vs2015_clang
or vs2015_clang_c2 are the same as vs2015_v140_clang_c2.

	the xp toolset has the same ommission behaviour as clang. For example,
vs2015_xp is the same as vs2015_v140_xp.

Alias list

It is easy to see that combining the VS solution version, target architecture
and toolsets above creates hundreds of different possibilities. This section
shows what each of them mean. (If you find any errors, please submit a bug or
PR).

VS2019

	cmany compiler alias

	project VS version

	Target arch.

	VS Toolset

	vs2019

	16 2019

	(native)

	v142

	vs2019_clang

	16 2019

	(native)

	v142_clang_c2

	vs2019_xp

	16 2019

	(native)

	v142_xp

	vs2019_v142

	16 2019

	(native)

	v142

	vs2019_v142_xp

	16 2019

	(native)

	v142_xp

	vs2019_v142_clang

	16 2019

	(native)

	v142_clang_c2

	vs2019_v141

	16 2019

	(native)

	v141

	vs2019_v141_xp

	16 2019

	(native)

	v141_xp

	vs2019_v141_clang

	16 2019

	(native)

	v141_clang_c2

	vs2019_v140

	16 2019

	(native)

	v140

	vs2019_v140_xp

	16 2019

	(native)

	v140_xp

	vs2019_v140_clang

	16 2019

	(native)

	v140_clang_c2

	vs2019_v120

	16 2019

	(native)

	v120

	vs2019_v120_xp

	16 2019

	(native)

	v120_xp

	vs2019_v110

	16 2019

	(native)

	v110

	vs2019_v110_xp

	16 2019

	(native)

	v110_xp

	vs2019_v100

	16 2019

	(native)

	v100

	vs2019_v100_xp

	16 2019

	(native)

	v100_xp

	vs2019_v90

	16 2019

	(native)

	v90

	vs2019_v90_xp

	16 2019

	(native)

	v90_xp

	vs2019_v80

	16 2019

	(native)

	v80

	vs2019_32

	16 2019

	x86

	v142

	vs2019_32_clang

	16 2019

	x86

	v142_clang_c2

	vs2019_32_xp

	16 2019

	x86

	v142_xp

	vs2019_32_v142

	16 2019

	x86

	v142

	vs2019_32_v142_xp

	16 2019

	x86

	v142_xp

	vs2019_32_v142_clang

	16 2019

	x86

	v142_clang_c2

	vs2019_32_v141

	16 2019

	x86

	v141

	vs2019_32_v141_xp

	16 2019

	x86

	v141_xp

	vs2019_32_v141_clang

	16 2019

	x86

	v141_clang_c2

	vs2019_32_v140

	16 2019

	x86

	v140

	vs2019_32_v140_xp

	16 2019

	x86

	v140_xp

	vs2019_32_v140_clang

	16 2019

	x86

	v140_clang_c2

	vs2019_32_v120

	16 2019

	x86

	v120

	vs2019_32_v120_xp

	16 2019

	x86

	v120_xp

	vs2019_32_v110

	16 2019

	x86

	v110

	vs2019_32_v110_xp

	16 2019

	x86

	v110_xp

	vs2019_32_v100

	16 2019

	x86

	v100

	vs2019_32_v100_xp

	16 2019

	x86

	v100_xp

	vs2019_32_v90

	16 2019

	x86

	v90

	vs2019_32_v90_xp

	16 2019

	x86

	v90_xp

	vs2019_32_v80

	16 2019

	x86

	v80

	vs2019_64

	16 2019

	x86_64

	v142

	vs2019_64_clang

	16 2019

	x86_64

	v142_clang_c2

	vs2019_64_xp

	16 2019

	x86_64

	v142_xp

	vs2019_64_v142

	16 2019

	x86_64

	v142

	vs2019_64_v142_xp

	16 2019

	x86_64

	v142_xp

	vs2019_64_v142_clang

	16 2019

	x86_64

	v142_clang_c2

	vs2019_64_v141

	16 2019

	x86_64

	v141

	vs2019_64_v141_xp

	16 2019

	x86_64

	v141_xp

	vs2019_64_v141_clang

	16 2019

	x86_64

	v141_clang_c2

	vs2019_64_v140

	16 2019

	x86_64

	v140

	vs2019_64_v140_xp

	16 2019

	x86_64

	v140_xp

	vs2019_64_v140_clang

	16 2019

	x86_64

	v140_clang_c2

	vs2019_64_v120

	16 2019

	x86_64

	v120

	vs2019_64_v120_xp

	16 2019

	x86_64

	v120_xp

	vs2019_64_v110

	16 2019

	x86_64

	v110

	vs2019_64_v110_xp

	16 2019

	x86_64

	v110_xp

	vs2019_64_v100

	16 2019

	x86_64

	v100

	vs2019_64_v100_xp

	16 2019

	x86_64

	v100_xp

	vs2019_64_v90

	16 2019

	x86_64

	v90

	vs2019_64_v90_xp

	16 2019

	x86_64

	v90_xp

	vs2019_64_v80

	16 2019

	x86_64

	v80

	vs2019_arm

	16 2019

	arm

	v142

	vs2019_arm_clang

	16 2019

	arm

	v142_clang_c2

	vs2019_arm_v142

	16 2019

	arm

	v142

	vs2019_arm_v142_clang

	16 2019

	arm

	v142_clang_c2

	vs2019_arm_v141

	16 2019

	arm

	v141

	vs2019_arm_v141_clang

	16 2019

	arm

	v141_clang_c2

	vs2019_arm_v140

	16 2019

	arm

	v140

	vs2019_arm_v140_clang

	16 2019

	arm

	v140_clang_c2

	vs2019_arm_v120

	16 2019

	arm

	v120

	vs2019_arm_v110

	16 2019

	arm

	v110

	vs2019_arm_v100

	16 2019

	arm

	v100

VS2017

	cmany compiler alias

	project VS version

	Target arch.

	VS Toolset

	vs2017

	15 2017

	(native)

	v141

	vs2017_clang

	15 2017

	(native)

	v141_clang_c2

	vs2017_xp

	15 2017

	(native)

	v141_xp

	vs2017_v141

	15 2017

	(native)

	v141

	vs2017_v141_xp

	15 2017

	(native)

	v141_xp

	vs2017_v141_clang

	15 2017

	(native)

	v141_clang_c2

	vs2017_v140

	15 2017

	(native)

	v140

	vs2017_v140_xp

	15 2017

	(native)

	v140_xp

	vs2017_v140_clang

	15 2017

	(native)

	v140_clang_c2

	vs2017_v120

	15 2017

	(native)

	v120

	vs2017_v120_xp

	15 2017

	(native)

	v120_xp

	vs2017_v110

	15 2017

	(native)

	v110

	vs2017_v110_xp

	15 2017

	(native)

	v110_xp

	vs2017_v100

	15 2017

	(native)

	v100

	vs2017_v100_xp

	15 2017

	(native)

	v100_xp

	vs2017_v90

	15 2017

	(native)

	v90

	vs2017_v90_xp

	15 2017

	(native)

	v90_xp

	vs2017_v80

	15 2017

	(native)

	v80

	vs2017_32

	15 2017

	x86

	v141

	vs2017_32_clang

	15 2017

	x86

	v141_clang_c2

	vs2017_32_xp

	15 2017

	x86

	v141_xp

	vs2017_32_v141

	15 2017

	x86

	v141

	vs2017_32_v141_xp

	15 2017

	x86

	v141_xp

	vs2017_32_v141_clang

	15 2017

	x86

	v141_clang_c2

	vs2017_32_v140

	15 2017

	x86

	v140

	vs2017_32_v140_xp

	15 2017

	x86

	v140_xp

	vs2017_32_v140_clang

	15 2017

	x86

	v140_clang_c2

	vs2017_32_v120

	15 2017

	x86

	v120

	vs2017_32_v120_xp

	15 2017

	x86

	v120_xp

	vs2017_32_v110

	15 2017

	x86

	v110

	vs2017_32_v110_xp

	15 2017

	x86

	v110_xp

	vs2017_32_v100

	15 2017

	x86

	v100

	vs2017_32_v100_xp

	15 2017

	x86

	v100_xp

	vs2017_32_v90

	15 2017

	x86

	v90

	vs2017_32_v90_xp

	15 2017

	x86

	v90_xp

	vs2017_32_v80

	15 2017

	x86

	v80

	vs2017_64

	15 2017

	x86_64

	v141

	vs2017_64_clang

	15 2017

	x86_64

	v141_clang_c2

	vs2017_64_xp

	15 2017

	x86_64

	v141_xp

	vs2017_64_v141

	15 2017

	x86_64

	v141

	vs2017_64_v141_xp

	15 2017

	x86_64

	v141_xp

	vs2017_64_v141_clang

	15 2017

	x86_64

	v141_clang_c2

	vs2017_64_v140

	15 2017

	x86_64

	v140

	vs2017_64_v140_xp

	15 2017

	x86_64

	v140_xp

	vs2017_64_v140_clang

	15 2017

	x86_64

	v140_clang_c2

	vs2017_64_v120

	15 2017

	x86_64

	v120

	vs2017_64_v120_xp

	15 2017

	x86_64

	v120_xp

	vs2017_64_v110

	15 2017

	x86_64

	v110

	vs2017_64_v110_xp

	15 2017

	x86_64

	v110_xp

	vs2017_64_v100

	15 2017

	x86_64

	v100

	vs2017_64_v100_xp

	15 2017

	x86_64

	v100_xp

	vs2017_64_v90

	15 2017

	x86_64

	v90

	vs2017_64_v90_xp

	15 2017

	x86_64

	v90_xp

	vs2017_64_v80

	15 2017

	x86_64

	v80

	vs2017_arm

	15 2017

	arm

	v141

	vs2017_arm_clang

	15 2017

	arm

	v141_clang_c2

	vs2017_arm_v141

	15 2017

	arm

	v141

	vs2017_arm_v141_clang

	15 2017

	arm

	v141_clang_c2

	vs2017_arm_v140

	15 2017

	arm

	v140

	vs2017_arm_v140_clang

	15 2017

	arm

	v140_clang_c2

	vs2017_arm_v120

	15 2017

	arm

	v120

	vs2017_arm_v110

	15 2017

	arm

	v110

	vs2017_arm_v100

	15 2017

	arm

	v100

VS2015

	cmany compiler alias

	project VS version

	Target arch.

	VS Toolset

	vs2015

	14 2015

	(native)

	v140

	vs2015_clang

	14 2015

	(native)

	v140_clang_c2

	vs2015_xp

	14 2015

	(native)

	v140_xp

	vs2015_v140

	14 2015

	(native)

	v140

	vs2015_v140_xp

	14 2015

	(native)

	v140_xp

	vs2015_v140_clang

	14 2015

	(native)

	v120

	vs2015_v120

	14 2015

	(native)

	v120_clang_c2

	vs2015_v120_xp

	14 2015

	(native)

	v120_xp

	vs2015_v110

	14 2015

	(native)

	v110

	vs2015_v110_xp

	14 2015

	(native)

	v110_xp

	vs2015_v100

	14 2015

	(native)

	v100

	vs2015_v100_xp

	14 2015

	(native)

	v100_xp

	vs2015_v90

	14 2015

	(native)

	v90

	vs2015_v90_xp

	14 2015

	(native)

	v90_xp

	vs2015_v80

	14 2015

	(native)

	v80

	vs2015_32

	14 2015

	x86

	v140

	vs2015_32_clang

	14 2015

	x86

	v140_clang_c2

	vs2015_32_xp

	14 2015

	x86

	v140_xp

	vs2015_32_v140

	14 2015

	x86

	v140

	vs2015_32_v140_xp

	14 2015

	x86

	v140_xp

	vs2015_32_v140_clang

	14 2015

	x86

	v140_clang_c2

	vs2015_32_v120

	14 2015

	x86

	v120

	vs2015_32_v120_xp

	14 2015

	x86

	v120_xp

	vs2015_32_v110

	14 2015

	x86

	v110

	vs2015_32_v110_xp

	14 2015

	x86

	v110_xp

	vs2015_32_v100

	14 2015

	x86

	v100

	vs2015_32_v100_xp

	14 2015

	x86

	v100_xp

	vs2017_32_v90

	14 2015

	x86

	v90

	vs2017_32_v90_xp

	14 2015

	x86

	v90_xp

	vs2017_32_v80

	14 2015

	x86

	v80

	vs2015_64

	14 2015

	x86_64

	v140

	vs2015_64_clang

	14 2015

	x86_64

	v140_clang_c2

	vs2015_64_xp

	14 2015

	x86_64

	v140_xp

	vs2015_64_v140

	14 2015

	x86_64

	v140

	vs2015_64_v140_xp

	14 2015

	x86_64

	v140_xp

	vs2015_64_v140_clang

	14 2015

	x86_64

	v140_clang_c2

	vs2015_64_v120

	14 2015

	x86_64

	v120

	vs2015_64_v120_xp

	14 2015

	x86_64

	v120_xp

	vs2015_64_v110

	14 2015

	x86_64

	v110

	vs2015_64_v110_xp

	14 2015

	x86_64

	v110_xp

	vs2015_64_v100

	14 2015

	x86_64

	v100

	vs2015_64_v100_xp

	14 2015

	x86_64

	v100_xp

	vs2015_64_v90

	14 2015

	x86_64

	v90

	vs2015_64_v90_xp

	14 2015

	x86_64

	v90_xp

	vs2015_64_v80

	14 2015

	x86_64

	v80

	vs2015_arm

	14 2015

	arm

	v140

	vs2015_arm_clang

	14 2015

	arm

	v140_clang_c2

VS2013

	cmany compiler alias

	project VS version

	Target arch.

	VS Toolset

	vs2013

	12 2013

	(native)

	v120

	vs2013_xp

	12 2013

	(native)

	v120_xp

	vs2013_32

	12 2013

	x86

	v120

	vs2013_32_xp

	12 2013

	x86

	v120_xp

	vs2013_64

	12 2013

	x86_64

	v120

	vs2013_64_xp

	12 2013

	x86_64

	v120_xp

	vs2013_v110

	12 2013

	(native)

	v110

	vs2013_v110_xp

	12 2013

	(native)

	v110_xp

	vs2013_32_v110

	12 2013

	x86

	v110

	vs2013_32_v110_xp

	12 2013

	x86

	v110_xp

	vs2013_64_v110

	12 2013

	x86_64

	v110

	vs2013_64_v110_xp

	12 2013

	x86_64

	v110_xp

	vs2013_v100

	12 2013

	(native)

	v100

	vs2013_v100_xp

	12 2013

	(native)

	v100_xp

	vs2013_32_v100

	12 2013

	x86

	v100

	vs2013_32_v100_xp

	12 2013

	x86

	v100_xp

	vs2013_64_v100

	12 2013

	x86_64

	v100

	vs2013_64_v100_xp

	12 2013

	x86_64

	v100_xp

	vs2013_v90

	12 2013

	(native)

	v90

	vs2013_v90_xp

	12 2013

	(native)

	v90_xp

	vs2013_32_v90

	12 2013

	x86

	v90

	vs2013_32_v90_xp

	12 2013

	x86

	v90_xp

	vs2013_64_v90

	12 2013

	x86_64

	v90

	vs2013_64_v90_xp

	12 2013

	x86_64

	v90_xp

	vs2013_v80

	12 2013

	(native)

	v80

	vs2013_32_v80

	12 2013

	x86

	v80

	vs2013_64_v80

	12 2013

	x86_64

	v80

VS2012

	cmany compiler alias

	project VS version

	Target arch.

	VS Toolset

	vs2012

	11 2012

	(native)

	v110

	vs2012_xp

	11 2012

	(native)

	v110_xp

	vs2012_32

	11 2012

	x86

	v110

	vs2012_32_xp

	11 2012

	x86

	v110_xp

	vs2012_64

	11 2012

	x86_64

	v110

	vs2012_64_xp

	11 2012

	x86_64

	v110_xp

	vs2012_arm

	11 2012

	arm

	v110

	vs2012_arm_xp

	11 2012

	arm

	v110_xp

	vs2012_v110

	11 2012

	(native)

	v110

	vs2012_v110_xp

	11 2012

	(native)

	v110_xp

	vs2012_32_v110

	11 2012

	x86

	v110

	vs2012_32_v110_xp

	11 2012

	x86

	v110_xp

	vs2012_64_v110

	11 2012

	x86_64

	v110

	vs2012_64_v110_xp

	11 2012

	x86_64

	v110_xp

	vs2012_arm_v110

	11 2012

	arm

	v110

	vs2012_arm_v110_xp

	11 2012

	arm

	v110_xp

	vs2012_v100

	11 2012

	(native)

	v100

	vs2012_v100_xp

	11 2012

	(native)

	v100_xp

	vs2012_32_v100

	11 2012

	x86

	v100

	vs2012_32_v100_xp

	11 2012

	x86

	v100_xp

	vs2012_64_v100

	11 2012

	x86_64

	v100

	vs2012_64_v100_xp

	11 2012

	x86_64

	v100_xp

	vs2012_arm_v100

	11 2012

	arm

	v100

	vs2012_arm_v100_xp

	11 2012

	arm

	v100_xp

	vs2012_v90

	11 2012

	(native)

	v90

	vs2012_v90_xp

	11 2012

	(native)

	v90_xp

	vs2012_32_v90

	11 2012

	x86

	v90

	vs2012_32_v90_xp

	11 2012

	x86

	v90_xp

	vs2012_64_v90

	11 2012

	x86_64

	v90

	vs2012_64_v90_xp

	11 2012

	x86_64

	v90_xp

	vs2012_arm_v90

	11 2012

	arm

	v90

	vs2012_arm_v90_xp

	11 2012

	arm

	v90_xp

	vs2012_v80

	11 2012

	(native)

	v80

	vs2012_32_v80

	11 2012

	x86

	v80

	vs2012_64_v80

	11 2012

	x86_64

	v80

	vs2012_arm_v80

	11 2012

	arm

	v80

VS2010

	cmany compiler alias

	project VS version

	Target arch.

	VS Toolset

	vs2010

	10 2010

	(native)

	v100

	vs2010_xp

	10 2010

	(native)

	v100_xp

	vs2010_32

	10 2010

	x86

	v100

	vs2010_32_xp

	10 2010

	x86

	v100_xp

	vs2010_64

	10 2010

	x86_64

	v100

	vs2010_64_xp

	10 2010

	x86_64

	v100_xp

	vs2010_ia64

	10 2010

	ia64

	v100

	vs2010_ia64_xp

	10 2010

	ia64

	v100_xp

	vs2010_v100

	10 2010

	(native)

	v100

	vs2010_v100_xp

	10 2010

	(native)

	v100_xp

	vs2010_32_v100

	10 2010

	x86

	v100

	vs2010_32_v100_xp

	10 2010

	x86

	v100_xp

	vs2010_64_v100

	10 2010

	x86_64

	v100

	vs2010_64_v100_xp

	10 2010

	x86_64

	v100_xp

	vs2010_ia64_v100

	10 2010

	ia64

	v100

	vs2010_ia64_v100_xp

	10 2010

	ia64

	v100_xp

	vs2010_v90

	10 2010

	(native)

	v90

	vs2010_v90_xp

	10 2010

	(native)

	v90_xp

	vs2010_32_v90

	10 2010

	x86

	v90

	vs2010_32_v90_xp

	10 2010

	x86

	v90_xp

	vs2010_64_v90

	10 2010

	x86_64

	v90

	vs2010_64_v90_xp

	10 2010

	x86_64

	v90_xp

	vs2010_ia64_v90

	10 2010

	ia64

	v90

	vs2010_ia64_v90_xp

	10 2010

	ia64

	v90_xp

	vs2010_v80

	10 2010

	(native)

	v80

	vs2010_32_v80

	10 2010

	x86

	v80

	vs2010_64_v80

	10 2010

	x86_64

	v80

VS2008

	cmany compiler alias

	project VS version

	Target arch.

	VS Toolset

	vs2008

	9 2008

	(native)

	v90

	vs2008_xp

	9 2008

	(native)

	v90_xp

	vs2008_32

	9 2008

	x86

	v90

	vs2008_32_xp

	9 2008

	x86

	v90_xp

	vs2008_64

	9 2008

	x86_64

	v90

	vs2008_64_xp

	9 2008

	x86_64

	v90_xp

	vs2008_ia64

	9 2008

	ia64

	v90

	vs2008_ia64_xp

	9 2008

	ia64

	v90_xp

	vs2008_v90

	9 2008

	(native)

	v90

	vs2008_v90_xp

	9 2008

	(native)

	v90_xp

	vs2008_32_v90

	9 2008

	x86

	v90

	vs2008_32_v90_xp

	9 2008

	x86

	v90_xp

	vs2008_64_v90

	9 2008

	x86_64

	v90

	vs2008_64_v90_xp

	9 2008

	x86_64

	v90_xp

	vs2008_ia64_v90

	9 2008

	ia64

	v90

	vs2008_ia64_v90_xp

	9 2008

	ia64

	v90_xp

	vs2008_v80

	9 2008

	(native)

	v80

	vs2008_32_v80

	9 2008

	x86

	v80

	vs2008_64_v80

	9 2008

	x86_64

	v80

	vs2008_ia64_v80

	9 2008

	ia64

	v80

VS2005

	cmany compiler alias

	project VS version

	Target arch.

	VS Toolset

	vs2005

	8 2005

	(native)

	v80

	vs2005_32

	8 2005

	x86

	v80

	vs2005_64

	8 2005

	x86_64

	v80

	vs2005_v80

	8 2005

	(native)

	v80

	vs2005_32_v80

	8 2005

	x86

	v80

	vs2005_64_v80

	8 2005

	x86_64

	v80

Project dependencies

Certain projects need to integrate their dependencies fully into their build
system, maybe because they are cross-platform or maybe because certain
compiler flags and macros need to be used not just in the project’s own
source code, but also in the source code of the project’s dependencies. Or
maybe because it’s just more practical to use CMake’s external project
facilities [https://cmake.org/cmake/help/v3.4/module/ExternalProject.html]
(which can serve as a sort-of dependency manager, as illustrated by projects
such as Hunter [https://github.com/ruslo/hunter]) to get the dependencies’
source code and compile them.

cmany offers the argument --deps path/to/extern/CMakeLists.txt to enable
building another CMake project which builds and installs the dependencies of
the current project. When --deps is given, the external project is built
for each configuration, and installed in the configuration’s build
directory. Use --deps-prefix to specify a different install directory for
the external project.

(To be continued)

Reusing arguments

In certain scenarios, the arguments to a cmany command can get a bit
complicated. To aid in such scenarios, cmany offers two ways of storing
these arguments, so that they are implicitly used in simple
commands such as cmany build.

Session arguments

You can store arguments in the environment variable CMANY_ARGS. Then the
resulting cmany command is taken as if it were given cmany <subcommand>
$CMANY_ARGS <command line arguments>. In the example below, the configure,
build and install commands will all use the five given compilers and two
build types, resulting in 10 build trees:

$ export CMANY_ARGS="-c clang++-3.9,clang++-3.8,g++-6,g++-7,icpc \
 -t Debug,Release"
$ cmany c # 10 builds
$ cmany b # same
$ cmany i # same

The arguments stored in CMANY_ARGS can be combined with any other
argument. For example, if you now want to build only the Debug types of
the current value of CMANY_ARGS, just use the --include-types/--it
inclusion flag:

$ cmany b -it Debug

or as another example, you can process only a single build tree via the
--include-builds/-ib, say, icpc with Release:

$ cmany b -ib 'icpc.*Release'

Some arguments to cmany are meant to be used before the cmany subcommand. For
those arguments, you should use the CMANY_PFX_ARGS environment variable
instead of CMANY_ARGS. cmany will see commands given to it as cmany
$CMANY_PFX_ARGS <subcommand> $CMANY_ARGS <command line arguments>.

Note

The values of the CMANY_ARGS and CMANY_PFX_ARGS environment
variables are always used in every cmany invokation. To prevent cmany
from using these values, you will have to unset the variables:

$ unset CMANY_ARGS CMANY_PFX_ARGS
$ cmany b # uses defaults now

Project file

cmany also allows you to permanently store its arguments in a
cmany.yml file which should be placed alongside the project
CMakeLists.txt. This feature is under current development and is not
ready.

Index

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Overview

 		
 cmany

 		
 Features

 		
 More info

 		
 Support

 		
 Current status

 		
 Known issues

 		
 License

 		
 Installing

 		
 Requirements

 		
 Installing from PyPI

 		
 Installing from source

 		
 Uninstalling

 		
 Quick tour

 		
 Getting help

 		
 Build

 		
 Configure

 		
 Install

 		
 Choosing the build type

 		
 Choosing the compiler

 		
 Choosing build/install directories

 		
 Building many trees at once

 		
 Using flags

 		
 Cross-compiling

 		
 Building dependencies

 		
 Argument reuse

 		
 Exporting build configurations

 		
 Build items

 		
 Per-item flags

 		
 Inheriting per-item flags

 		
 Compilers

 		
 Microsoft Visual Studio

 		
 Build types

 		
 Variants

 		
 Null variant

 		
 Systems

 		
 Architectures

 		
 Excluding builds

 		
 Excluding builds by item name

 		
 Excluding builds by build name

 		
 Examples

 		
 Flags

 		
 CMake cache variables

 		
 Preprocessor macros

 		
 C++ compiler flags

 		
 C compiler flags

 		
 Linker flags

 		
 Flag aliases

 		
 Built-in flag aliases

 		
 Defining more flag aliases

 		
 Toolchains

 		
 Build exclusion arguments

 		
 Using cmany with Visual Studio

 		
 TL;DR

 		
 VS alias examples

 		
 Complete explanation

 		
 Aliasing scheme

 		
 Visual Studio versions

 		
 Target architecture

 		
 Visual Studio toolset

 		
 Alias list

 		
 VS2019

 		
 VS2017

 		
 VS2015

 		
 VS2013

 		
 VS2012

 		
 VS2010

 		
 VS2008

 		
 VS2005

 		
 Project dependencies

 		
 Reusing arguments

 		
 Session arguments

 		
 Project file

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

